Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
J Pathol ; 254(4): 418-429, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33748968

RESUMO

Human genetics plays an increasingly important role in drug development and population health. Here we review the history of human genetics in the context of accelerating the discovery of therapies, present examples of how human genetics evidence supports successful drug targets, and discuss how polygenic risk scores could be beneficial in various clinical settings. We highlight the value of direct-to-consumer platforms in the era of fast-paced big data biotechnology, and how diverse genetic and health data can benefit society. © 2021 23andMe, Inc. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Descoberta de Drogas , Genoma Humano , Humanos
2.
Artigo em Inglês | MEDLINE | ID: mdl-31451507

RESUMO

New drugs with novel mechanisms of resistance are desperately needed to address both community and nosocomial infections due to Gram-negative bacteria. One such potential target is LpxC, an essential enzyme that catalyzes the first committed step of lipid A biosynthesis. Achaogen conducted an extensive research campaign to discover novel LpxC inhibitors with activity against Pseudomonas aeruginosa We report here the in vitro antibacterial activity and pharmacodynamics of ACHN-975, the only molecule from these efforts and the first ever LpxC inhibitor to be evaluated in phase 1 clinical trials. In addition, we describe the profiles of three additional LpxC inhibitors that were identified as potential lead molecules. These efforts did not produce an additional development candidate with a sufficiently large therapeutic window and the program was subsequently terminated.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Catálise/efeitos dos fármacos , Humanos , Pseudomonas aeruginosa/metabolismo
3.
ChemMedChem ; 14(16): 1560-1572, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31283109

RESUMO

UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) is a Zn2+ deacetylase that is essential for the survival of most pathogenic Gram-negative bacteria. ACHN-975 (N-((S)-3-amino-1-(hydroxyamino)-3-methyl-1-oxobutan-2-yl)-4-(((1R,2R)-2-(hydroxymethyl)cyclopropyl)buta-1,3-diyn-1-yl)benzamide) was the first LpxC inhibitor to reach human clinical testing and was discovered to have a dose-limiting cardiovascular toxicity of transient hypotension without compensatory tachycardia. Herein we report the effort beyond ACHN-975 to discover LpxC inhibitors optimized for enzyme potency, antibacterial activity, pharmacokinetics, and cardiovascular safety. Based on its overall profile, compound 26 (LPXC-516, (S)-N-(2-(hydroxyamino)-1-(3-methoxy-1,1-dioxidothietan-3-yl)-2-oxoethyl)-4-(6-hydroxyhexa-1,3-diyn-1-yl)benzamide) was chosen for further development. A phosphate prodrug of 26 was developed that provided a solubility of >30 mg mL-1 for parenteral administration and conversion into the active drug with a t1/2 of approximately two minutes. Unexpectedly, and despite our optimization efforts, the prodrug of 26 still possesses a therapeutic window insufficient to support further clinical development.


Assuntos
Amidoidrolases/antagonistas & inibidores , Antibacterianos/farmacologia , Di-Inos/farmacologia , Inibidores Enzimáticos/farmacologia , Coração/efeitos dos fármacos , Ácidos Hidroxâmicos/farmacologia , Animais , Antibacterianos/síntese química , Antibacterianos/farmacocinética , Antibacterianos/toxicidade , Proteínas de Bactérias/antagonistas & inibidores , Cardiotoxicidade , Di-Inos/síntese química , Di-Inos/farmacocinética , Di-Inos/toxicidade , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/toxicidade , Ácidos Hidroxâmicos/síntese química , Ácidos Hidroxâmicos/farmacocinética , Ácidos Hidroxâmicos/toxicidade , Masculino , Estrutura Molecular , Pró-Fármacos/síntese química , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia , Pró-Fármacos/toxicidade , Pseudomonas aeruginosa/efeitos dos fármacos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
5.
Oncotarget ; 8(45): 78870-78881, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-29108271

RESUMO

PURPOSE: To identify hypoxia-related biomarkers indicative of response and resistance to epirubicin treatment in patients with locally advanced breast cancer. PATIENTS AND METHODS: One hundred seventy-six women with T2-4 N0-1 breast tumours were randomly assigned to receive epirubicin 120 mg/m2/1-21 (EPI ARM), epirubicin 120 mg/m2/1-21 + erythropoietin 10.000 IU sc three times weekly (EPI-EPO ARM) and epirubicin 40 mg/m2/w-q21 (EPI-W ARM). Sixteen tumour proteins involved in cell survival, hypoxia, angiogenesis and growth factor, were assessed by immunohistochemistry in pre-treatment samples. A multivariate generalized linear regression approach was applied using a penalized least-square minimization to perform variable selection and regularization. RESULTS: VEGF and GLUT-1 expression were significantly positively associated with complete response (CR) to treatment in all leave-one-out iterations. Bcl-2 expression was inversely correlated with pCR, whilst EPO expression was positively correlated with pathological complete response (pCR). Haemaglobin and HIF-1a nuclear expression were inversely correlated with pCR. HB and HIF-1a expression were associated with a higher risk of relapse and overall survival. CONCLUSION: Hypoxic biomarkers determines the epirubicin resistance in breast cancer. Assessment of such biomarkers, may be useful for predicting chemosensitivity and also anthracycline-based treatment outcome.

6.
Oncotarget ; 8(25): 40115-40131, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28445154

RESUMO

Delta-like 4 (DLL4) and Jagged1 (JAG1) are two key Notch ligands implicated in tumour angiogenesis. They were shown to have opposite effects on mouse retinal and adult regenerative angiogenesis. In tumours, both ligands are upregulated but their relative effects and interactions in tumour biology, particularly in tumour response to therapeutic intervention are unclear. Here we demonstrate that DLL4 and JAG1 displayed equal potency in stimulating Notch target genes in HMEC-1 endothelial cells but had opposing effects on sprouting angiogenesis in vitro. Mouse DLL4 or JAG1 expressed in glioblastoma cells decreased tumour cell proliferation in vitro but promoted tumour growth in vivo. mDLL4-expressing tumours showed fewer but larger vessels whereas mJAG1-tumours produced more vessels. In both tumour types pericyte coverage was decreased but the vessels were more perfused. Both ligands increased tumour resistance towards anti-VEGF therapy but the resistance was higher in mDLL4-tumours versus mJAG1-tumours. However, their sensitivity to the therapy was restored by blocking Notch signalling with dibenzazepine. Importantly, anti-DLL4 antibody blocked the effect of JAG1 on tumour growth and increased vessel branching in vivo. The mechanism behind the differential responsiveness was due to a positive feedback loop for DLL4-Notch signalling, rendering DLL4 more dominant in activating Notch signalling in the tumour microenvironment. We concluded that DLL4 and JAG1 promote tumour growth by modulating tumour angiogenesis via different mechanisms. JAG1 is not antagonistic but utilises DLL4 in tumour angiogenesis. The results suggest that anti-JAG1 therapy should be explored in conjunction with anti-DLL4 treatment in developing anti-Notch therapies in clinics.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína Jagged-1/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias/metabolismo , Neovascularização Patológica/metabolismo , Animais , Bevacizumab/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Células Cultivadas , Dibenzazepinas/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteína Jagged-1/genética , Estimativa de Kaplan-Meier , Proteínas de Membrana/genética , Camundongos , Neoplasias/irrigação sanguínea , Neoplasias/tratamento farmacológico , Neovascularização Patológica/genética , Neovascularização Patológica/prevenção & controle , Interferência de RNA , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
7.
EBioMedicine ; 10: 109-16, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27474395

RESUMO

Anti-VEGF antibody bevacizumab has prolonged progression-free survival in several cancer types, however acquired resistance is common. Adaption has been observed pre-clinically, but no human study has shown timing and genes involved, enabling formulation of new clinical paradigms. In a window-of-opportunity study in 35 ductal breast cancer patients for 2weeks prior to neoadjuvant chemotherapy, we monitored bevacizumab response by Dynamic Contrast-Enhanced Magnetic Resonance [DCE-MRI], transcriptomic and pathology. Initial treatment response showed significant overall decrease in DCE-MRI median K(trans), angiogenic factors such ESM1 and FLT1, and proliferation. However, it also revealed great heterogeneity, spanning from downregulation of blood vessel density and central necrosis to continued growth with new vasculature. Crucially, significantly upregulated pathways leading to resistance included glycolysis and pH adaptation, PI3K-Akt and immune checkpoint signaling, for which inhibitors exist, making a strong case to investigate such combinations. These findings support that anti-angiogenesis trials should incorporate initial enrichment of patients with high K(trans), and a range of targeted therapeutic options to meet potential early resistance pathways. Multi-arm adaptive trials are ongoing using molecular markers for targeted agents, but our results suggest this needs to be further modified by much earlier adaptation when using drugs affecting the tumor microenvironment.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Resistencia a Medicamentos Antineoplásicos/genética , Metabolismo Energético/genética , Imunomodulação/genética , Inibidores da Angiogênese/administração & dosagem , Inibidores da Angiogênese/farmacocinética , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Biomarcadores Tumorais , Neoplasias da Mama/diagnóstico , Proliferação de Células/efeitos dos fármacos , Análise por Conglomerados , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Imageamento por Ressonância Magnética/métodos , Neovascularização Patológica/diagnóstico , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Transdução de Sinais/efeitos dos fármacos , Transcriptoma , Resultado do Tratamento , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
EBioMedicine ; 2(5): 406-20, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26137585

RESUMO

Hepatocyte growth factor (HGF) and vascular endothelial growth factor (VEGF) drive cancer through their respective receptors, MET and VEGF receptor 2 (VEGFR2). VEGFR2 inhibits MET by promoting MET dephosphorylation. However, whether MET conversely regulates VEGFR2 remains unknown. Here we show that MET suppresses VEGFR2 protein by inducing its endoplasmic-reticulum-associated degradation (ERAD), via intracrine VEGF action. HGF-MET signaling in epithelial cancer cells promoted VEGF biosynthesis through PI3-kinase. In turn, VEGF and VEGFR2 associated within the ER, activating inositol-requiring enzyme 1α, and thereby facilitating ERAD-mediated depletion of VEGFR2. MET disruption upregulated VEGFR2, inducing compensatory tumor growth via VEGFR2 and MEK. However, concurrent disruption of MET and either VEGF or MEK circumvented this, enabling more profound tumor inhibition. Our findings uncover unique cross-regulation between MET and VEGFR2-two RTKs that play significant roles in tumor malignancy. Furthermore, these results suggest rational combinatorial strategies for targeting RTK signaling pathways more effectively, which has potentially important implications for cancer therapy.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Células Epiteliais/metabolismo , Espaço Intracelular/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Degradação Associada com o Retículo Endoplasmático/efeitos dos fármacos , Endorribonucleases/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Humanos , Espaço Intracelular/efeitos dos fármacos , Lisina/metabolismo , Camundongos , Modelos Biológicos , Neoplasias/metabolismo , Neoplasias/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteólise/efeitos dos fármacos , Fatores de Transcrição de Fator Regulador X , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Ubiquitinação/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Proteína 1 de Ligação a X-Box
9.
Breast Cancer Res ; 17: 59, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25902869

RESUMO

INTRODUCTION: Breast cancer, the most common cause of cancer-related deaths worldwide among women, is a molecularly and clinically heterogeneous disease. Extensive genetic and epigenetic profiling of breast tumors has recently revealed novel putative driver genes, including p21-activated kinase (PAK)1. PAK1 is a serine/threonine kinase downstream of small GTP-binding proteins, Rac1 and Cdc42, and is an integral component of growth factor signaling networks and cellular functions fundamental to tumorigenesis. METHODS: PAK1 dysregulation (copy number gain, mRNA and protein expression) was evaluated in two cohorts of breast cancer tissues (n=980 and 1,108). A novel small molecule inhibitor, FRAX1036, and RNA interference were used to examine PAK1 loss of function and combination with docetaxel in vitro. Mechanism of action for the therapeutic combination, both cellular and molecular, was assessed via time-lapse microscopy and immunoblotting. RESULTS: We demonstrate that focal genomic amplification and overexpression of PAK1 are associated with poor clinical outcome in the luminal subtype of breast cancer (P=1.29×10(-4) and P=0.015, respectively). Given the role for PAK1 in regulating cytoskeletal organization, we hypothesized that combination of PAK1 inhibition with taxane treatment could be combined to further interfere with microtubule dynamics and cell survival. Consistent with this, administration of docetaxel with either a novel small molecule inhibitor of group I PAKs, FRAX1036, or PAK1 small interfering RNA oligonucleotides dramatically altered signaling to cytoskeletal-associated proteins, such as stathmin, and induced microtubule disorganization and cellular apoptosis. Live-cell imaging revealed that the duration of mitotic arrest mediated by docetaxel was significantly reduced in the presence of FRAX1036, and this was associated with increased kinetics of apoptosis. CONCLUSIONS: Taken together, these findings further support PAK1 as a potential target in breast cancer and suggest combination with taxanes as a viable strategy to increase anti-tumor efficacy.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Microtúbulos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Moduladores de Tubulina/farmacologia , Quinases Ativadas por p21/antagonistas & inibidores , Apoptose/genética , Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Variações do Número de Cópias de DNA , Docetaxel , Sinergismo Farmacológico , Feminino , Amplificação de Genes , Expressão Gênica , Humanos , Prognóstico , Transdução de Sinais/efeitos dos fármacos , Taxoides/farmacologia , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo
10.
Sci Transl Med ; 7(273): 273ra15, 2015 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-25653221

RESUMO

Inhibition of the kinase activity of leucine-rich repeat kinase 2 (LRRK2) is under investigation as a possible treatment for Parkinson's disease. However, there is no clinical validation as yet, and the safety implications of targeting LRRK2 kinase activity are not well understood. We evaluated the potential safety risks by comparing human and mouse LRRK2 mRNA tissue expression, by analyzing a Lrrk2 knockout mouse model, and by testing selective brain-penetrating LRRK2 kinase inhibitors in multiple species. LRRK2 mRNA tissue expression was comparable between species. Phenotypic analysis of Lrrk2 knockout mice revealed morphologic changes in lungs and kidneys, similar to those reported previously. However, in preclinical toxicity assessments in rodents, no pulmonary or renal changes were induced by two distinct LRRK2 kinase inhibitors. Both of these kinase inhibitors induced abnormal cytoplasmic accumulation of secretory lysosome-related organelles known as lamellar bodies in type II pneumocytes of the lung in nonhuman primates, but no lysosomal abnormality was observed in the kidney. The pulmonary change resembled the phenotype of Lrrk2 knockout mice, suggesting that this was LRRK2-mediated rather than a nonspecific or off-target effect. A biomarker of lysosomal dysregulation, di-docosahexaenoyl (22:6) bis(monoacylglycerol) phosphate (di-22:6-BMP), was also decreased in the urine of Lrrk2 knockout mice and nonhuman primates treated with LRRK2 kinase inhibitors. Our results suggest a role for LRRK2 in regulating lysosome-related lamellar bodies and that pulmonary toxicity may be a critical safety liability for LRRK2 kinase inhibitors in patients.


Assuntos
Pulmão/enzimologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/patologia , Animais , Biomarcadores/sangue , Biomarcadores/urina , Relação Dose-Resposta a Droga , Feminino , Células HEK293 , Humanos , Rim/anormalidades , Rim/efeitos dos fármacos , Rim/patologia , Rim/ultraestrutura , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Pulmão/anormalidades , Pulmão/patologia , Pulmão/ultraestrutura , Macaca fascicularis , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morfolinas/química , Morfolinas/farmacologia , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Pirazóis/química , Pirazóis/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley
11.
J Pathol ; 234(4): 502-13, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25074413

RESUMO

Pancreatic adenocarcinoma (PDAC) is a major unmet medical need and a deeper understanding of molecular drivers is needed to advance therapeutic options for patients. We report here that p21-activated kinase 1 (PAK1) is a central node in PDAC cells downstream of multiple growth factor signalling pathways, including hepatocyte growth factor (HGF) and MET receptor tyrosine kinase. PAK1 inhibition blocks signalling to cytoskeletal effectors and tumour cell motility driven by HGF/MET. MET antagonists, such as onartuzumab and crizotinib, are currently in clinical development. Given that even highly effective therapies have resistance mechanisms, we show that combination with PAK1 inhibition overcomes potential resistance mechanisms mediated either by activation of parallel growth factor pathways or by direct amplification of PAK1. Inhibition of PAK1 attenuated in vivo tumour growth and metastasis in a model of pancreatic adenocarcinoma. In human tissues, PAK1 is highly expressed in a proportion of PDACs (33% IHC score 2 or 3; n = 304) and its expression is significantly associated with MET positivity (p < 0.0001) and linked to a widespread metastatic pattern in patients (p = 0.067). Taken together, our results provide evidence for a functional role of MET/PAK1 signalling in pancreatic adenocarcinoma and support further characterization of therapeutic inhibitors in this indication.


Assuntos
Adenocarcinoma/metabolismo , Movimento Celular , Resistencia a Medicamentos Antineoplásicos/fisiologia , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Quinases Ativadas por p21/metabolismo , Adenocarcinoma/patologia , Animais , Anticorpos Monoclonais/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Azetidinas/farmacologia , Movimento Celular/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Imuno-Histoquímica , Camundongos , Neoplasias Pancreáticas/patologia , Piperidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
12.
J Neurosci ; 34(19): 6425-37, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24806669

RESUMO

Recent studies implicate death receptor 6 (DR6) in an amyloid precursor protein (APP)-dependent pathway regulating developmental axon pruning, and in a pruning pathway operating during plastic rearrangements in adult brain. DR6 has also been suggested to mediate toxicity in vitro of Aß peptides derived from APP. Given the link between APP, Aß, and Alzheimer's disease (AD), these findings have raised the possibility that DR6 contributes to aspects of neurodegeneration in AD. To test this possibility, we have used mouse models to characterize potential function(s) of DR6 in the adult CNS and in AD-related pathophysiology. We show that DR6 is broadly expressed within the adult CNS and regulates the density of excitatory synaptic connections onto pyramidal neurons in a genetic pathway with APP. DR6 knock-out also gives rise to behavioral abnormalities, some of which are similar to those previously documented in APP knock-out animals. However, in two distinct APP transgenic models of AD, we did not observe any alteration in the formation of amyloid plaques, gliosis, synaptic loss, or cognitive behavioral deficits with genetic deletion of DR6, though we did observe a transient reduction in the degree of microglial activation in one model. Our results support the view that DR6 functions with APP to modulate synaptic density in the adult CNS, but do not provide evidence for a role of DR6 in the pathophysiology of AD.


Assuntos
Doença de Alzheimer/fisiopatologia , Precursor de Proteína beta-Amiloide/fisiologia , Sistema Nervoso Central/citologia , Receptores do Fator de Necrose Tumoral/fisiologia , Transdução de Sinais/fisiologia , Sinapses/fisiologia , Doença de Alzheimer/patologia , Animais , Aprendizagem da Esquiva/fisiologia , Sistema Nervoso Central/crescimento & desenvolvimento , Condicionamento Operante/fisiologia , Espinhas Dendríticas/fisiologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Medo/psicologia , Gliose/patologia , Humanos , Hibridização In Situ , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/fisiologia , Vias Neurais/fisiologia , Placa Amiloide/patologia
13.
Nat Commun ; 5: 3530, 2014 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-24667486

RESUMO

Deciphering metastatic routes is critically important as metastasis is a primary cause of cancer mortality. In colorectal cancer (CRC), it is unknown whether liver metastases derive from cancer cells that first colonize intestinal lymph nodes, or whether such metastases can form without prior lymph node involvement. A lack of relevant metastatic CRC models has precluded investigations into metastatic routes. Here we describe a metastatic CRC mouse model and show that liver metastases can manifest without a lymph node metastatic intermediary. Colorectal tumours transplanted onto the colonic mucosa invade and metastasize to specific target organs including the intestinal lymph nodes, liver and lungs. Importantly, this metastatic pattern differs from that observed following caecum implantation, which invariably involves peritoneal carcinomatosis. Anti-angiogenesis inhibits liver metastasis, yet anti-lymphangiogenesis does not impact liver metastasis despite abrogating lymph node metastasis. Our data demonstrate direct hematogenous spread as a dissemination route that contributes to CRC liver malignancy.


Assuntos
Carcinoma/secundário , Ceco , Colo , Neoplasias Colorretais/patologia , Neoplasias Hepáticas/secundário , Linfonodos/patologia , Neoplasias Peritoneais/secundário , Inibidores da Angiogênese/farmacologia , Animais , Modelos Animais de Doenças , Células HCT116 , Humanos , Linfonodos/efeitos dos fármacos , Linfangiogênese/efeitos dos fármacos , Metástase Linfática , Camundongos , Metástase Neoplásica , Transplante de Neoplasias , Fator C de Crescimento do Endotélio Vascular/antagonistas & inibidores
14.
Inflamm Bowel Dis ; 20(3): 514-24, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24492313

RESUMO

BACKGROUND: NADPH oxidase-derived reactive oxygen species, such as H2O2, are part of the intestinal innate immune system but may drive carcinogenesis through DNA damage. We sought to identify the predominant enzyme system capable of producing H2O2 in active ulcerative colitis and assess whether it is affected by 5-aminosalicylic acid (5-ASA). METHODS: We studied human mucosal biopsies by expression arrays, quantitative real-time polymerase chain reaction for NADPH oxidase family members, in situ hybridization (DUOX2 and DUOXA2) and immunofluorescence for DUOX, 8-OHdG (DNA damage), and γH2AX (DNA damage response) and sought effects of 5-ASA on ex vivo cultured biopsies and cultured rectal cancer cells. RESULTS: DUOX2 with maturation partner DUOXA2 forms the predominant system for H2O2 production in human colon and is upregulated in active colitis. DUOX2 in situ is exclusively epithelial, varies between and within individual crypts, and increases near inflammation. 8-OHdG and γH2AX were observed in damaged crypt epithelium. 5-ASA upregulated DUOX2 and DUOXA2 levels in the setting of active versus quiescent disease and altered DUOX2 expression in cultured biopsies. Ingenuity pathway analysis confirmed that inflammation status and 5-ASA increase expression of DUOX2 and DUOXA2. An epithelial cell model confirmed that cultured cancer cells expressed DUOX protein and produced H2O2 in response to hypoxia and 5-ASA exposure. CONCLUSIONS: Both DUOX2 and DUOXA2 expression are involved specifically in inflammation and are regulated on a crypt-by-crypt basis in ulcerative colitis tissues. Synergy between inflammation, hypoxia, and 5-ASA to increase H2O2 production could explain how 5-ASA supports innate defense, although potentially increasing the burden of DNA damage.


Assuntos
Colite Ulcerativa/patologia , Neoplasias do Colo/patologia , Peróxido de Hidrogênio/metabolismo , Proteínas de Membrana/metabolismo , Mesalamina/farmacologia , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Adenoma/tratamento farmacológico , Adenoma/metabolismo , Adenoma/patologia , Anti-Inflamatórios não Esteroides/farmacologia , Western Blotting , Células Cultivadas , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Oxidases Duais , Imunofluorescência , Humanos , Hipóxia/metabolismo , Hipóxia/patologia , Hibridização In Situ , Inflamação/metabolismo , Inflamação/patologia , Proteínas de Membrana/genética , NADPH Oxidases/genética , Oxidantes/metabolismo , Oxirredução , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
15.
J Pathol ; 232(2): 99-102, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24122335

RESUMO

The rapid pace of drug discovery and drug development in oncology, immunology and ophthalmology brings new challenges; the efficient and effective development of new targeted drugs will require more detailed molecular classifications of histologically homogeneous diseases that show heterogeneous clinical outcomes. To this end, single companion diagnostics for specific drugs will be replaced by multiplex diagnostics for entire therapeutic areas, preserving tissue and enabling rapid molecular taxonomy. The field will move away from the development of new molecular entities as single agents, to which resistance is common. Instead, a detailed understanding of the pathological mechanisms of resistance, in patients and in preclinical models, will be key to the validation of scientifically rational and clinically effective drug combinations. To remain at the heart of disease diagnosis and appropriate management, pathologists must evolve into translational biologists and biomarker scientists. Herein, we provide examples of where this metamorphosis has already taken place, in lung cancer and melanoma, where the transformation has yet to begin, in the use of immunotherapies for ophthalmology and oncology, and where there is fertile soil for a revolution in treatment, in efforts to classify glioblastoma and personalize treatment. The challenges of disease heterogeneity, the regulatory environment and adequate tissue are ever present, but these too are being overcome in dedicated academic centres. In summary, the tools necessary to overcome the 'whens' and 'ifs' of the molecular revolution are in the hands of pathologists today; it is a matter of standardization, training and leadership to bring these into routine practice and translate science into patient benefit. This Annual Review Issue of the Journal of Pathology highlights the central role for pathology in modern drug discovery and development.


Assuntos
Descoberta de Drogas/métodos , Patologia , Animais , Biomarcadores/análise , Biópsia , Descoberta de Drogas/tendências , Previsões , Humanos , Terapia de Alvo Molecular , Patologia/tendências
16.
J Exp Med ; 210(12): 2553-67, 2013 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-24166713

RESUMO

Excessive glutamate signaling is thought to underlie neurodegeneration in multiple contexts, yet the pro-degenerative signaling pathways downstream of glutamate receptor activation are not well defined. We show that dual leucine zipper kinase (DLK) is essential for excitotoxicity-induced degeneration of neurons in vivo. In mature neurons, DLK is present in the synapse and interacts with multiple known postsynaptic density proteins including the scaffolding protein PSD-95. To examine DLK function in the adult, DLK-inducible knockout mice were generated through Tamoxifen-induced activation of Cre-ERT in mice containing a floxed DLK allele, which circumvents the neonatal lethality associated with germline deletion. DLK-inducible knockouts displayed a modest increase in basal synaptic transmission but had an attenuation of the JNK/c-Jun stress response pathway activation and significantly reduced neuronal degeneration after kainic acid-induced seizures. Together, these data demonstrate that DLK is a critical upstream regulator of JNK-mediated neurodegeneration downstream of glutamate receptor hyper-activation and represents an attractive target for the treatment of indications where excitotoxicity is a primary driver of neuronal loss.


Assuntos
MAP Quinase Quinase Quinases/fisiologia , Degeneração Neural/fisiopatologia , Animais , Encéfalo/patologia , Encéfalo/fisiopatologia , Proteína 4 Homóloga a Disks-Large , Ácido Glutâmico/fisiologia , Guanilato Quinases/fisiologia , Ácido Caínico/toxicidade , MAP Quinase Quinase Quinases/deficiência , MAP Quinase Quinase Quinases/genética , Sistema de Sinalização das MAP Quinases , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Knockout , N-Metilaspartato/fisiologia , Degeneração Neural/genética , Degeneração Neural/patologia , Proteínas do Tecido Nervoso/fisiologia , Sinapses/fisiologia
17.
J Clin Invest ; 123(9): 3997-4009, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23945239

RESUMO

Many oncology drugs are administered at their maximally tolerated dose without the knowledge of their optimal efficacious dose range. In this study, we describe a multifaceted approach that integrated preclinical and clinical data to identify the optimal dose for an antiangiogenesis agent, anti-EGFL7. EGFL7 is an extracellular matrix-associated protein expressed in activated endothelium. Recombinant EGFL7 protein supported EC adhesion and protected ECs from stress-induced apoptosis. Anti-EGFL7 antibodies inhibited both of these key processes and augmented anti-VEGF-mediated vascular damage in various murine tumor models. In a genetically engineered mouse model of advanced non-small cell lung cancer, we found that anti-EGFL7 enhanced both the progression-free and overall survival benefits derived from anti-VEGF therapy in a dose-dependent manner. In addition, we identified a circulating progenitor cell type that was regulated by EGFL7 and evaluated the response of these cells to anti-EGFL7 treatment in both tumor-bearing mice and cancer patients from a phase I clinical trial. Importantly, these preclinical efficacy and clinical biomarker results enabled rational selection of the anti-EGFL7 dose currently being tested in phase II clinical trials.


Assuntos
Inibidores da Angiogênese/farmacologia , Anticorpos/farmacologia , Apoptose , Fatores de Crescimento Endotelial/imunologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Bevacizumab , Proteínas de Ligação ao Cálcio , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Ensaios Clínicos Fase I como Assunto , Família de Proteínas EGF , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Insulinoma/irrigação sanguínea , Insulinoma/tratamento farmacológico , Insulinoma/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Camundongos Transgênicos , Células Neoplásicas Circulantes/efeitos dos fármacos , Células Neoplásicas Circulantes/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Neoplasias Pancreáticas/irrigação sanguínea , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Carga Tumoral/efeitos dos fármacos , Células Tumorais Cultivadas , Fator A de Crescimento do Endotélio Vascular/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Histopathology ; 63(3): 351-61, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23802768

RESUMO

AIMS: Preclinical data suggest that signalling through the HGF-MET pathway may confer resistance to BRAF inhibition in BRAF(V600E/K) melanoma. Therefore, blockade of HGF-MET signalling might be a valid therapeutic strategy, in combination with BRAF inhibition, in BRAF(V600E/K) melanoma. The aim of this study was to investigate the clinical relevance of these observations by evaluating the survival impact of MET expression in patients with BRAF(V600E/K) advanced melanoma treated with vemurafenib. METHODS AND RESULTS: Formalin-fixed tissue blocks were obtained of tumours from patients enrolled in the BRIM2 (n = 59) and BRIM3 (n = 150) trials of vemurafenib in advanced BRAF(V600E/K) melanoma. Immunohistochemistry for MET (SP44 rabbit monoclonal antibody) was performed with a highly validated assay and clinically validated scoring system. Pretreatment MET expression was frequent at the ≥1 + cutoff (BRIM3, 31%; BRIM2, 49%), but relatively infrequent at the ≥2 + cutoff (BRIM3, 9%; BRIM2, 19%). Retrospective subset analyses showed that, irrespective of the cutoff used or the treatment arm, MET expression did not show prognostic significance, in terms of objective response rate, progression-free survival, or overall survival. CONCLUSIONS: MET is expressed in a proportion of BRAF(V600E/K) advanced melanomas. Further analyses on appropriately powered subsets are needed to determine the prognostic and predictive significance of MET in vemurafenib-treated melanoma.


Assuntos
Melanoma/metabolismo , Melanoma/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Intervalo Livre de Doença , Feminino , Humanos , Imuno-Histoquímica , Indóis/uso terapêutico , Estimativa de Kaplan-Meier , Masculino , Melanoma/terapia , Pessoa de Meia-Idade , Proteínas Mutantes/antagonistas & inibidores , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Prognóstico , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Coelhos , Estudos Retrospectivos , Transdução de Sinais , Neoplasias Cutâneas/terapia , Sulfonamidas/uso terapêutico , Vemurafenib , Adulto Jovem
19.
Clin Cancer Res ; 19(13): 3681-92, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23685835

RESUMO

PURPOSE: The aim of this study was to identify conserved pharmacodynamic and potential predictive biomarkers of response to anti-VEGF therapy using gene expression profiling in preclinical tumor models and in patients. EXPERIMENTAL DESIGN: Surrogate markers of VEGF inhibition [VEGF-dependent genes or VEGF-dependent vasculature (VDV)] were identified by profiling gene expression changes induced in response to VEGF blockade in preclinical tumor models and in human biopsies from patients treated with anti-VEGF monoclonal antibodies. The potential value of VDV genes as candidate predictive biomarkers was tested by correlating high or low VDV gene expression levels in pretreatment clinical samples with the subsequent clinical efficacy of bevacizumab (anti-VEGF)-containing therapy. RESULTS: We show that VDV genes, including direct and more distal VEGF downstream endothelial targets, enable detection of VEGF signaling inhibition in mouse tumor models and human tumor biopsies. Retrospective analyses of clinical trial data indicate that patients with higher VDV expression in pretreatment tumor samples exhibited improved clinical outcome when treated with bevacizumab-containing therapies. CONCLUSIONS: In this work, we identified surrogate markers (VDV genes) for in vivo VEGF signaling in tumors and showed clinical data supporting a correlation between pretreatment VEGF bioactivity and the subsequent efficacy of anti-VEGF therapy. We propose that VDV genes are candidate biomarkers with the potential to aid the selection of novel indications as well as patients likely to respond to anti-VEGF therapy. The data presented here define a diagnostic biomarker hypothesis based on translational research that warrants further evaluation in additional retrospective and prospective trials.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/metabolismo , Inibidores da Angiogênese/farmacologia , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos/farmacologia , Bevacizumab , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Neoplasias/genética , Neoplasias/mortalidade , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Tumores Neuroendócrinos/tratamento farmacológico , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo
20.
J Natl Cancer Inst ; 105(9): 606-7, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23535073

RESUMO

BACKGROUND: Although remarkable clinical response rates in melanoma have been observed using vemurafenib or dabrafenib in patients with tumors carrying oncogenic mutations in BRAF, a substantial unmet medical need remains for the subset of patients with wild-type BRAF tumors. METHODS: To investigate the role of p21-activated kinases (PAKs) in melanoma, we determined PAK1 genomic copy number and protein expression for a panel of human melanoma tissues. PAK1 was inhibited in vitro and in vivo using RNA interference or PF-3758309 inhibitor treatment in a panel of melanoma cell lines with known BRAF and RAS (rat sarcoma) genotype to better understand its role in melanoma cell proliferation and migration. Tumorigenesis was assessed in vivo in female NCR nude mice and analyzed with cubic spline regression and area under the curve analyses. All statistical tests were two-sided. RESULTS: Strong cytoplasmic PAK1 protein expression was prevalent in melanomas (27%) and negatively associated with activating mutation of the BRAF oncogene (P < .001). Focal copy number gain of PAK1 at 11q13 was also observed in 9% of melanomas (n = 87; copy number ≥ 2.5) and was mutually exclusive with BRAF mutation (P < .005). Selective PAK1 inhibition attenuated signaling through mitogen-activated protein kinase (MAPK) as well as cytoskeleton-regulating pathways to modulate the proliferation and migration of BRAF wild-type melanoma cells. Treatment of BRAF wild-type melanomas with PF-3758309 PAK inhibitor decreased tumor growth for SK-MEL23 and 537MEL xenografts (91% and 63% inhibition, respectively; P < .001) and MAPK pathway activation in vivo. CONCLUSIONS: Taken together, our results provide evidence for a functional role of PAK1 in BRAF wild-type melanoma and therapeutic use of PAK inhibitors in this indication.


Assuntos
Melanoma/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Quinases Ativadas por p21/efeitos dos fármacos , Quinases Ativadas por p21/metabolismo , Animais , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Imunoprecipitação , Ipilimumab , Melanoma/tratamento farmacológico , Camundongos , Camundongos Nus , Proteínas Proto-Oncogênicas B-raf , Transdução de Sinais/efeitos dos fármacos , Neoplasias Cutâneas/metabolismo , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...